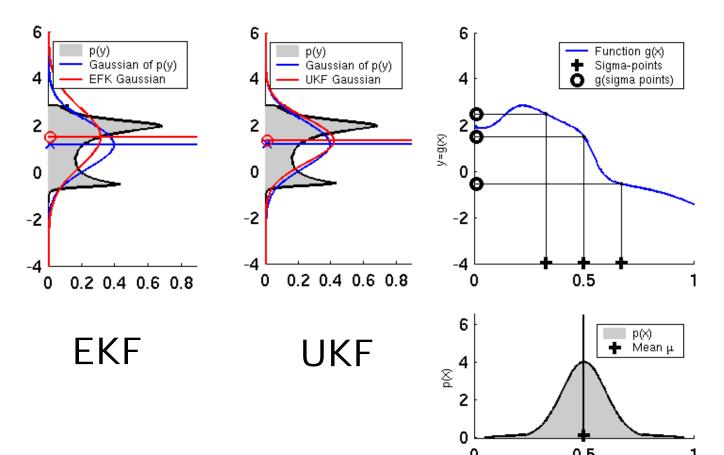
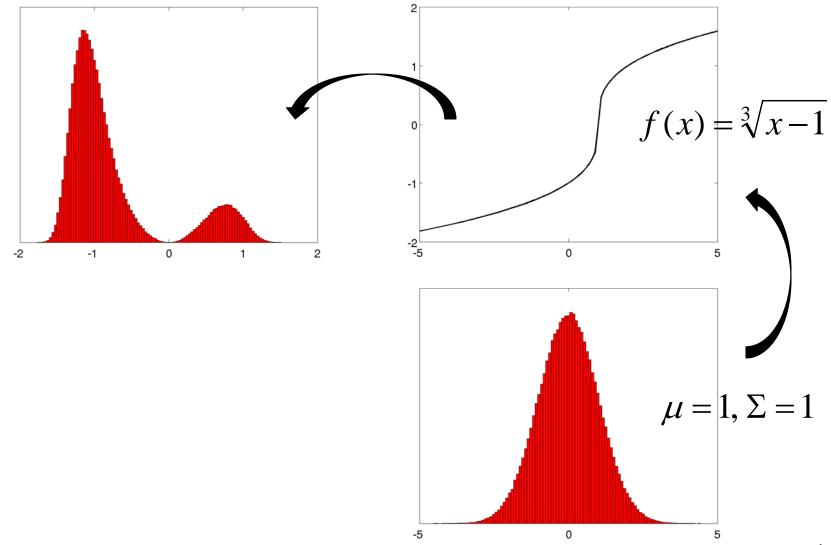
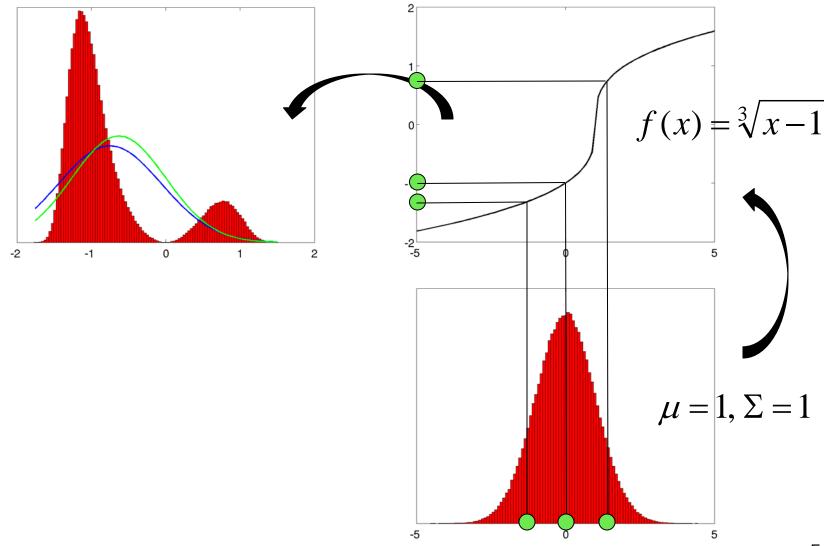
Unscented Kalman Filter

Linearization via Unscented Transform

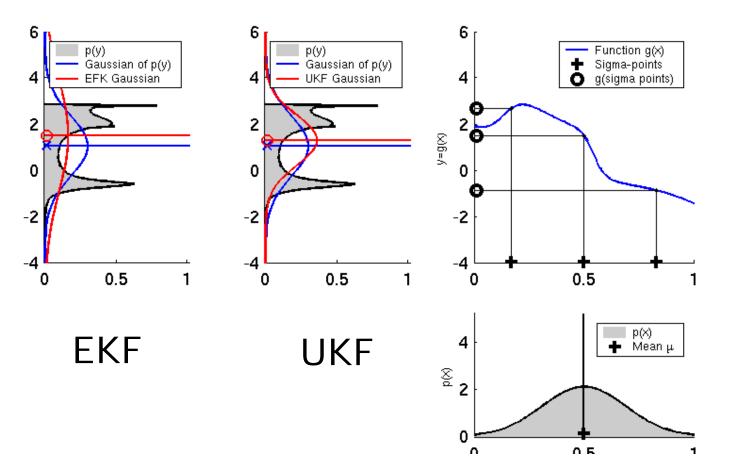


- intuition: it should be easier to approximate a given distribution than it is to approximate an arbitrary non-linear function
 - it is easy to transform a point through a nonlinear function
 - use a set of points that capture the mean and covariance of the distribution, transform the points through the non-linear function, then compute the (weighted) mean and covariance of the transformed points

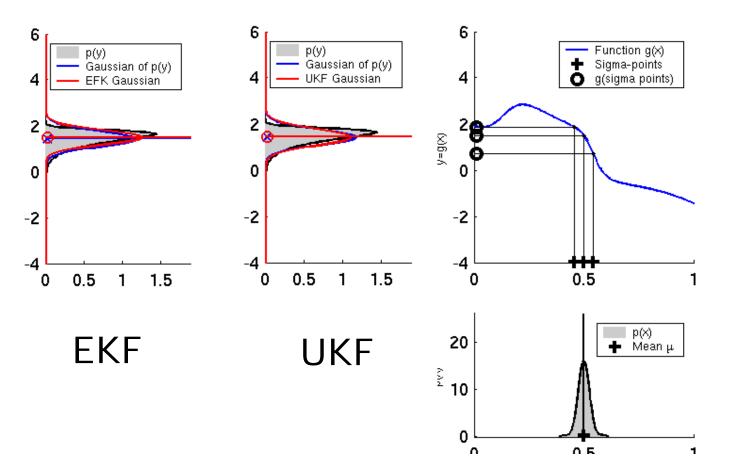




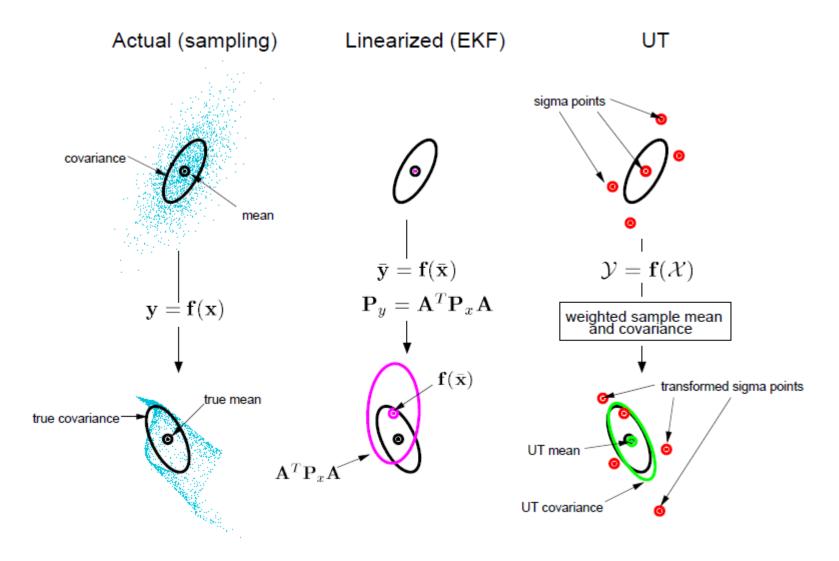
UKF Sigma-Point Estimate (2)



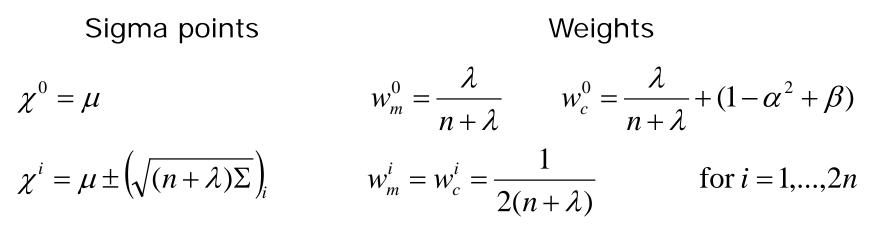
UKF Sigma-Point Estimate (3)



UKF Sigma-Point Estimate (4)



• for an n-dimensional Gaussian with mean μ and covariance Σ , the unscented transform uses 2n+1 sigma points (and associated weights)



$$\lambda = \alpha^2 \left(n + \kappa \right) - n$$

- choose κ≥0 to guarantee a "reasonable" covariance matrix
 - value is not critical, so choose $\kappa = 0$ by default
- choose $0 \le \alpha \le 1$
 - controls the spread of the sigma point distribution; should be small when nonlinearities are strong
- choose $\beta \ge 0$
 - $\beta = 2$ is optimal if distribution is Gaussian

Pass sigma points through nonlinear function

$$\psi^i = g(\chi^i)$$

Recover mean and covariance

$$\mu' = \sum_{i=0}^{2n} w_m^i \psi^i$$
$$\Sigma' = \sum_{i=0}^{2n} w_c^i (\psi^i - \mu) (\psi^i - \mu)^T$$

UKF_localization ($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m$):

Prediction:

 $M_{t} = \begin{pmatrix} \left(\alpha_{1} v_{t}^{2} + \alpha_{2} \omega_{t}^{2} \right)^{2} & 0 \\ 0 & \left(\alpha_{2} v_{t}^{2} + \alpha_{4} \omega_{t}^{2} \right)^{2} \end{pmatrix}$ $Q_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma^2 \end{pmatrix}$ $\mu_{t-1}^{a} = \begin{pmatrix} \mu_{t-1}^{T} & (0 \ 0)^{T} & (0 \ 0)^{T} \end{pmatrix}$ $\Sigma_{t-1}^{a} = \begin{pmatrix} \Sigma_{t-1} & 0 & 0 \\ 0 & M_{t} & 0 \\ 0 & 0 & Q_{t} \end{pmatrix}$ $\chi_{t-1}^{a} = \begin{pmatrix} \mu_{t-1}^{a} & \mu_{t-1}^{a} + \gamma \sqrt{\Sigma_{t-1}^{a}} & \mu_{t-1}^{a} - \gamma \sqrt{\Sigma_{t-1}^{a}} \end{pmatrix}$ $\overline{\chi}_{t}^{x} = g\left(u_{t} + \chi_{t}^{u}, \chi_{t-1}^{x}\right)$ $\overline{\mu}_t = \sum^{2L} w_m^i \ \chi_{i,t}^x$ $\overline{\Sigma}_{t} = \sum_{k=1}^{2L} w_{c}^{i} \left(\chi_{i,t}^{x} - \overline{\mu}_{t} \right) \left(\chi_{i,t}^{x} - \overline{\mu}_{t} \right)^{T}$

Motion noise

Measurement noise

Augmented state mean

Augmented covariance

Sigma points Prediction of sigma points

Predicted mean

Predicted covariance

UKF_localization ($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m$):

Correction:

$$\begin{aligned} \overline{Z}_{t} &= h(\chi_{t}^{x}) + \chi_{t}^{z} \\ \hat{z}_{t} &= \sum_{i=0}^{2L} w_{m}^{i} \,\overline{Z}_{i,t} \\ S_{t} &= \sum_{i=0}^{2L} w_{c}^{i} \, (\overline{Z}_{i,t} - \hat{z}_{t}) (\overline{Z}_{i,t} - \hat{z}_{t})^{T} \\ \Sigma_{t}^{x,z} &= \sum_{i=0}^{2L} w_{c}^{i} \, (\overline{\chi}_{i,t}^{x} - \overline{\mu}_{t}) (\overline{Z}_{i,t} - \hat{z}_{t})^{T} \\ K_{t} &= \Sigma_{t}^{x,z} S_{t}^{-1} \\ \mu_{t} &= \overline{\mu}_{t} + K_{t} (z_{t} - \hat{z}_{t}) \end{aligned}$$

Measurement sigma points

Predicted measurement mean

Pred. measurement covariance

Cross-covariance

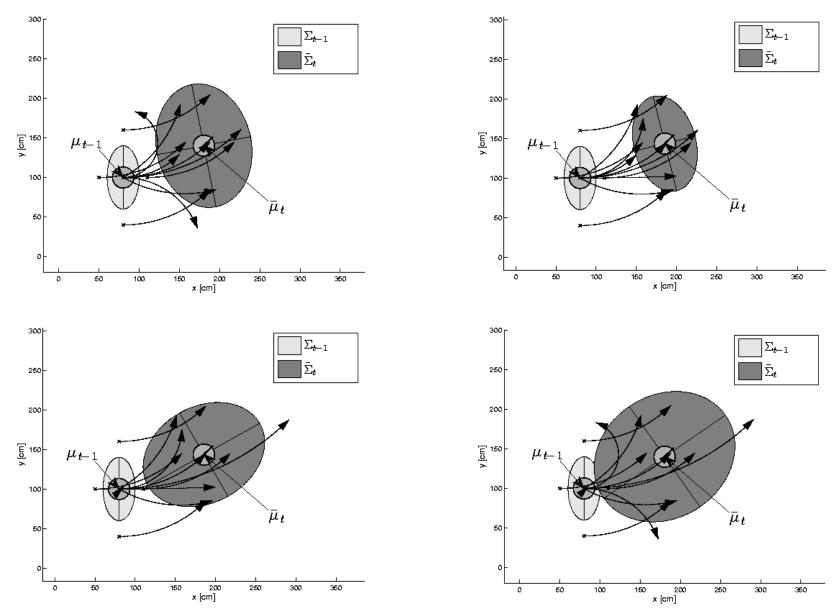
Kalman gain

Updated mean

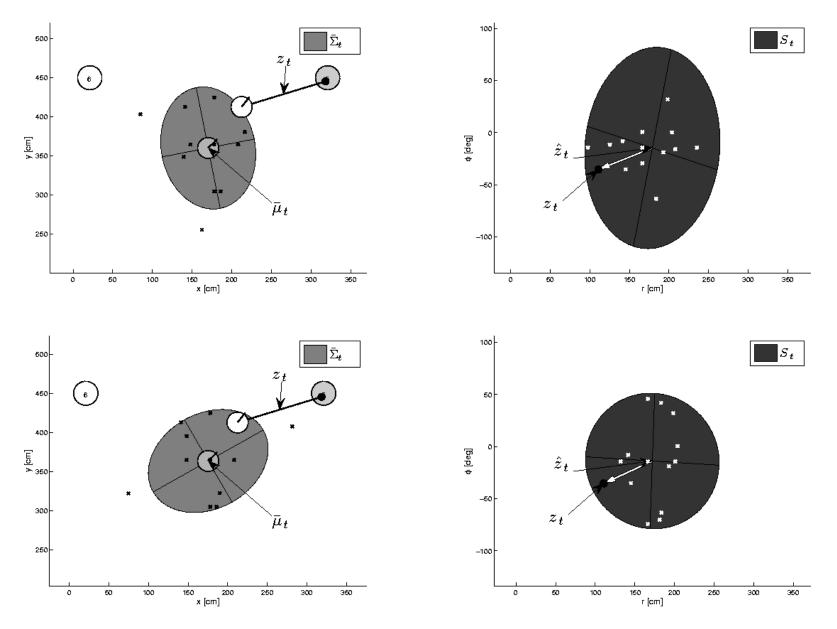
 $\Sigma_t = \overline{\Sigma}_t - K_t S_t K_t^T$

Updated covariance

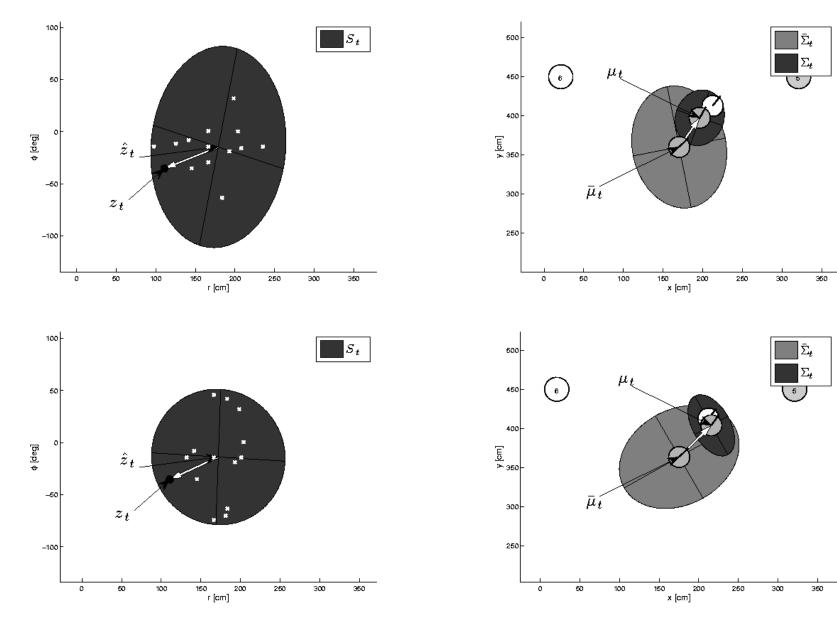
UKF Prediction Step



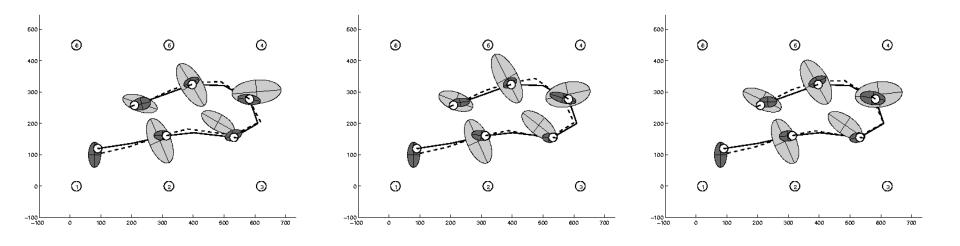
UKF Observation Prediction Step



UKF Correction Step



Estimation Sequence

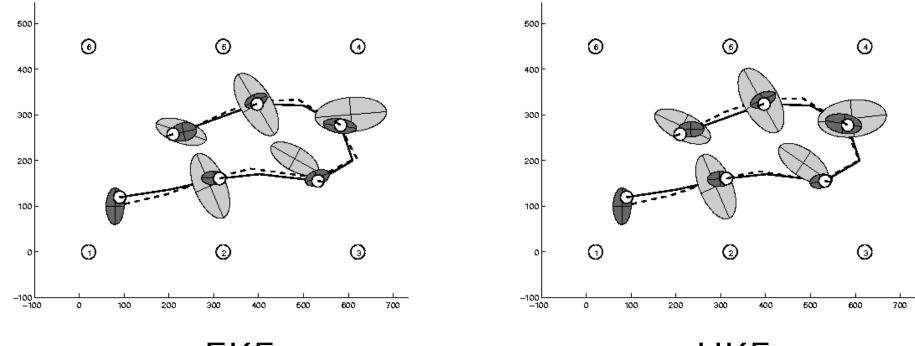


EKF

PF

UKF

Estimation Sequence

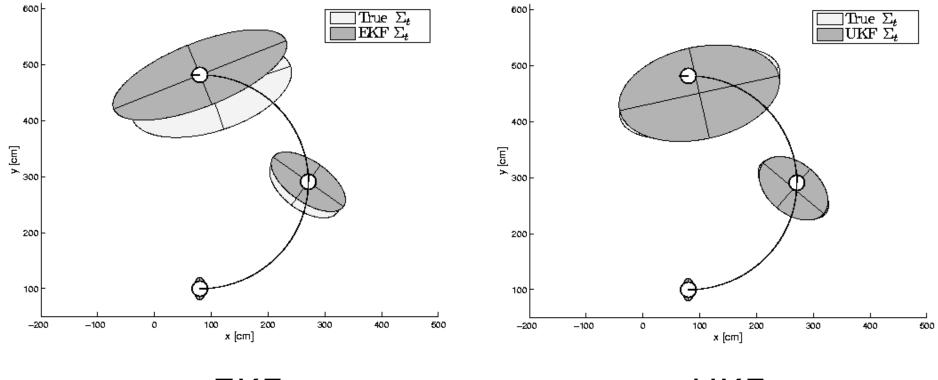


EKF

UKF

Prediction Quality

velocity_motion_model



EKF

UKF

UKF Summary

- Highly efficient: Same complexity as EKF, with a constant factor slower in typical practical applications
- Better linearization than EKF: Accurate in first two terms of Taylor expansion (EKF only first term)
- Derivative-free: No Jacobians needed
- Still not optimal!